April 2019 – Technical Talk

BCGS Technical Talk – April 18, 2019

Speaker: Kevin Fan, B.Sc., UBC

Title: Humanitarian Geophysics in Myanmar: Partnering with Local Governments and Universities to Alleviate Seasonal Droughts

Date/Time: Thursday, April 18, 2019 @ 4:30pm PST

Location: 4th Floor Conference Room, Room 451, 409 Granville St. (UK Building at Granville and Hastings), Vancouver

Abstract:

Millions of people in Myanmar are affected by annual water shortages—a fact exemplified by the situation in rural Mon state in the country’s southeast, where village wells routinely run dry for months in the dry season. The result: water insecurity and suffering for tens of thousands of Mon villagers. The DC-Resistivity method has significant potential in Mon state, given its ability to characterize freshwater aquifers and the occurrence of saline groundwater—both essential in a coastal region with limited groundwater supply often infiltrated by saltwater. Mon state’s generalized stratigraphy consists of an electrically resistive fractured crystalline bedrock underlying an electrically conductive clay aquitard, for which a significant contrast in resistivity is expected. Moreover, previous 1D Resistivity surveys funded by the Japanese International Cooperation Agency (JICA) in Mon villages have shown promise in determining optimal locations at which to drill wells.

We discuss a proposed project with SEG’s Geoscientists Without Borders foundation, aiming to: a) deploy ERT (Electrical Resistivity Tomography) geophysical technology in water-stressed rural Mon villages to improve water security for people living in rural areas, increase well-drilling success rates, and empower women and girls; and b) build technical capacity in geophysical data acquisition, analysis, and interpretation by training local undergraduates, graduate students, and researchers/faculty at Mawlamyine University and government engineers at the Department of Rural Development, via global, multidisciplinary partnerships. We will discuss plans to train locals about ERT survey fundamentals and data analysis/interpretation, then run a survey campaign with the newly trained participants. We will then integrate the results with follow-up drilling to site optimal locations for wells, perform ground truthing, and generate case histories, contributing to the global geoscience community. Central to our project and proposed training will be the continued development of open source resources at GIF (Geophysical Inversion Facility), encompassing educational resources on ERT surveying and inversion using GIF open source software. We will also discuss our experiences and lessons learned from a previous 6-month Geophysical Survey Training volunteer placement in Myanmar with the Mon state Department of Rural Development, as facilitated by Canadian international development organization Cuso International. For this placement, we co-built an inexpensive resistivity device that successfully delineated low resistivity zones and achieved results comparable to a previous Syscal R2 survey down to 35 m depths. We also conducted initial calibration testing, trained government engineers in basic data acquisition and analysis, and developed essential relationships with a diverse set of water stakeholders in the community.